Entri Populer

Minggu, 27 Januari 2013

Gerak Melingkar Beraturan, Kecepatan Linear dan Anguler, Percepatan Sentripetal

Artikel dan Makalah tentang Gerak Melingkar Beraturan, Kecepatan Linear dan Anguler, Percepatan Sentripetal - Coba perhatikan benda-benda di sekeliling Anda. Benda-benda apa saja yang dapat bergerak melingkar? Mungkin Anda pernah melihat sebuah film yang diputar pada VCD atau DVD. Sebenarnya, kedua alat tersebut hanya berfungsi sebagai pemutar CD, sedangkan benda yang berputar pada VCD dan DVD tersebut adalah CD. Tahukah Anda mengapa CD tetap berada pada porosnya ketika berputar? Gerak melingkar dapat terjadi juga pada roller coaster sedang bergerak. Pernahkah Anda menaiki roller coaster? Jika Anda menaiki roller coaster yang sedang bergerak, Anda akan merasakan seolah-olah akan keluar atau terpental dari lintasan. Apakah yang menyebabkan hal tersebut. Untuk mengetahuinya, Anda harus memahami konsep tentang gerak melingkar. Oleh karena itu, Anda dapat mempelajari dan memahami konsep gerak melingkar pada bab ini.

A. Kecepatan Linear dan Kecepatan Anguler

Sebuah benda dikatakan bergerak melingkar jika lintasan yang dilaluinya berbentuk lingkaran. Pada pelajaran sebelumnya, Anda telah belajar mengenai gerak lurus. Setiap benda yang bergerak selalu memiliki kecepatan, walaupun kecepatan yang dimiliki setiap benda berbeda-beda. Begitu pula dengan gerak melingkar, setiap benda yang bergerak melingkar memiliki dua kecepatan, yakni kecepatan linear dan kecepatan anguler. Kedua kecepatan ini tidaklah sama, akan tetapi penting dalam proses gerak melingkar.

1. Kecepatan Linear

Coba Anda perhatikan benda-benda yang bergerak melingkar. Apa yang menyebabkan benda tersebut berputar? Kecepatan apa saja yang dimiliki benda tersebut ketika berputar? Kecepatan yang dimiliki benda ketika bergerak melingkar dengan arah menyinggung lintasan putarannya disebut kecepatan linear. Kecepatan linear akan selalu menyinggung lintasan lingkaran yang memiliki panjang lintasan yang sama dengan keliling lingkaran.

Δs = keliling lingkaran
Δs = 2πr                                (1-1)

dengan Δs adalah panjang lintasan yang ditempuh dan r adalah jari-jari lintasan yang berbentuk lingkaran.
Arah kecepatan linear dalam gerak melingkar
Gambar 1. Arah kecepatan linear dalam gerak melingkar.
Contoh Soal 1 :

Sebuah benda bergerak melingkar pada sebuah lintasan yang memiliki diameter 200 cm. Jika benda tersebut berputar sebanyak 1,5 kali putaran, tentukanlah jarak yang ditempuh benda tersebut.

Kunci Jawaban :

Diketahui: d = 200 cm = 2 m.

Oleh karena jari-jari lingkaran adalah setengah dari panjang diameter maka :

r = ½ × 2 m = 1 m.

Keliling sebuah lingkaran adalah 2π r sehingga jarak yang ditempuh oleh benda tersebut adalah 1,5 kali keliling lingkaran, yakni

Δ s = 1,5 × ( 2π r )
Δ s = 1,5 × 2 × 3,14 × 1 m
Δ s = 9,42 m

Jadi, jarak yang telah ditempuh benda tersebut adalah sejauh 9,42 m.

Waktu yang ditempuh sebuah benda ketika bergerak melingkar dalam satu putaran penuh disebut periode, yang diberi lambang T dengan satuan sekon. Banyaknya lintasan yang dapat ditempuh dalam satu sekon disebut frekuensi, yang diberi lambang f dengan satuan hertz. Nama ini diambil dari salah seorang ilmuwan yang berjasa dalam ilmu Fisika, yakni Henrich Hertz (1857–1895). Hubungan antara periode dan frekuensi dapat dituliskan dalam persamaan berikut.

f = 1 / T             (1-2)

Dalam materi gerak lurus, pengertian kecepatan adalah perubahan perpindahan dalam selang waktu tertentu. Begitu pula dengan gerak melingkar yang dapat didefinisikan sebagai besarnya panjang lintasan yang ditempuh dalam selang waktu tertentu. Besarnya kecepatan linear disebut juga laju linear. Persamaan laju linear dalam gerak melingkar dapat dituliskan sebagai berikut.

Laju linear = panjang lintasan / selang waktu

atau

v = Δs / Δt

Dalam gerak melingkar, panjang lintasan diubah menjadi keliling lintasan dan selang waktu yang ditempuh diubah menjadi periode. Oleh karena itu persamaannya menjadi :

v = 2πr / T           (1-3)

Oleh karena 1 / T = f,  Persamaan (1–3) dapat ditulis kembali menjadi :

v= 2πrf               (1-4)

Contoh Soal 2 :

Sebuah roda yang berjari-jari 50 cm berotasi dengan kecepatan sudut 900 rpm. Kelajuan tangensial sebuah titik pada tepi roda itu adalah ....

a. 7,5π m/s
b. 15π m/s
c. 225 π m/s
d. 350 π m/s
e. 450π m/s

Kunci Jawaban :

Kelajuan tangensial : v= 2πrf = 900 rpm = 900 / 60 sekon = = 15 putaran / sekon

v = 2π × 15 putaran / sekon × 0,5 m

v = 15π m/s

Jawab: b

Contoh Soal 3 :

Sebuah roda sepeda berputar sebanyak 10 kali putaran tiap 1 sekon dengan kecepatan linear 18 m/s. Tentukanlah panjang diameter roda sepeda tersebut.

Kunci Jawaban :

Diketahui: f = 10 hertz, dan v = 18 m/s.

Dengan menggunakan Persamaan (1–4), diperoleh :

v = 2πrf

r = v / 2πf

r = 18 m/s / 2 x 3,14 x 10 Hz

r = 0,287 m

Oleh karena jari-jari sebuah lingkaran adalah setengah dari diameter maka :

r = ½ d
d = 2 r
d = 2 × 0,287 m
d = 0,574 m = 5,74 cm
Jadi, diameter roda sepeda tersebut adalah 5,74 cm.

2. Kecepatan Anguler

Perhatikan kembali sebuah benda yang bergerak melingkar seperti pada Gambar 2. Benda yang bergerak pada lintasannya akan membentuk sudut tertentu dari posisi awal benda diam. Perubahan sudut ini mengikuti arah gerak benda pada lintasan tersebut. Perubahan sudut gerak benda akan bernilai positif jika gerak benda berlawanan dengan arah putaran jam. Adapun perubahan sudut akan bernilai negatif jika arah gerak benda searah dengan arah putaran jam.
Arah kecepatan linear dan anguler dengan perubahan sudut
Gambar 2. Arah kecepatan linear dan anguler dengan perubahan sudut θ
Perubahan sudut dilambangkan dengan Δθ dan memiliki satuan radian. Biasanya, sering juga satuan perubahan sudut menggunakan derajat. Hubungan antara radian dan derajat dapat dituliskan sebagai berikut.

1 rad = sudut putaran (dalam derajat) / 2π

Untuk satu putaran penuh,

1 rad = 360° / 2π = 57,3°

Besarnya perubahan sudut ( Δθ ) dalam selang waktu ( Δt ) tertentu disebut kelajuan anguler atau kelajuan sudut. Kelajuan anguler ini dilambangkan dengan ω dan memiliki satuan rad/s. Besarnya kelajuan anguler dapat ditulis sebagai berikut.

Kelajuan anguler = perubahan sudut / selang waktu

atau

ω = Δq / Δt                     (1-5)

Dalam melakukan satu putaran penuh, sudut yang ditempuh adalah 360° atau 2π rad dalam waktu T sekon, dengan T adalah periode. Dari Persamaan (1–5), dapat ditulis kembali menjadi :

ω = 2π / T                      (1-6)

Dari pembahasan sebelumnya, Anda telah mengetahui bahwa frekuensi f = 1 / T sehingga Persamaan (1–6) menjadi

ω= 2πf                         (1-7)

Contoh Soal 4 :

Sebuah benda yang berada di ujung sebuah CD melakukan gerak melingkar dengan besar sudut yang ditempuh adalah ¾ putaran dalam waktu 1 sekon. Tentukanlah kelajuan sudut dari benda tersebut.

Kunci Jawaban :

Diketahui : f = ¾ / s = 0,75 hertz.

Dengan menggunakan Persamaan (1–7), diperoleh :

ω = 2πf

ω = 2 3,14 0,75 hertz

ω = 4,71 rad/s

Besarnya nilai tersebut menunjukkan nilai kelajuan anguler dalam ¾ putaran.

Jika Anda perhatikan Persamaan (1–6) dan (1–7), terdapat hubungan antara laju linear (v) dengan kelajuan anguler (ω ). Jika persamaan-persamaan laju linear dan laju anguler ditulis kembali, akan diperoleh persamaan baru seperti berikut.

v= 2πrf

ω = 2πf

sehingga hubungan antara laju linear (v) dan laju anguler (ω ) dapat ditulis menjadi :

v = ω r                  (1-8)

dengan : 

v = laju linear (m/s),
ω = laju anguler (rad/s), dan
r = jari-jari lintasan (m).

Catatan Fisika :

Sudut yang ditempuh oleh sebuah benda untuk bergerak melingkar sama dengan panjang lintasan (busur) yang dilalui dibagi dengan jari-jari lintasan θ = s / r

Contoh Soal 5 :

Sebuah partikel bergerak melingkar dengan kelajuan 4 m/s dan jari-jari lintasannya 0,5 m. Tentukanlah kelajuan angulernya.

Kunci Jawaban :

Diketahui: 

v = 4 m/s, dan
r = 0,5 m.

Dengan menggunakan Persamaan (1–8), diperoleh :

v = ω r

ω = v / r

ω = (4 m/s) / (0,5 m) = 8 rad/s

B. Percepatan Sentripetal

Pada bab sebelumnya Anda telah belajar mengenai percepatan rata-rata. Percepatan rata-rata dapat didefinisikan sebagai perubahan kecepatan dalam selang waktu tertentu. Ketika Anda belajar mengenai gerak lurus beraturan, percepatan yang dialami sebuah benda sama dengan nol. Apakah di dalam gerak melingkar beraturan juga berlaku seperti halnya gerak lurus beraturan? Jawabannya adalah tidak. Mengapa?
Vektor kecepatan sebuah benda untuk selang waktu yang sangat kecil, perubahan kecepatan Δv hampir tegak lurus pada v dan mengarah ke pusat lingkaran.
Gambar 3. Vektor kecepatan sebuah benda untuk selang waktu yang sangat kecil, perubahan kecepatan Δv hampir tegak lurus pada v dan mengarah ke pusat lingkaran.
Coba Anda perhatikan Gambar 3. Apakah Anda masih mengingat rumus dari percepatan sesaat pada bab sebelumnya? Percepatan sesaat sebuah benda dituliskan dalam bentuk limit seperti berikut ini.
atau :
Dari persamaan tersebut dapat dilihat bahwa percepatan sesaat (a) searah dengan perubahan kecepatan (Δv). Jika Δt→0 perubahan kecepatan (Δv) akan tegak lurus terhadap kecepatan v1 dan v2 sehingga percepatan sesaat haruslah tegak lurus juga dengan kecepatan v1 dan v2. Jika dibandingkan sisi pada gambar a dengan gambar b diperoleh :
Jika kedua persamaan (baik di sebelah kiri maupun sebelah kanan) dibagi dengan Δt akan diperoleh :
Pada konsep kecepatan sesaat, nilai percepatan adalah limit dari persamaan tersebut dan jika ditulis ulang akan diperoleh :

dengan menganggap titik P1 semakin dekat dengan P2 maka :

as  = v2 / r           (1-9)

Percepatan yang tegak lurus terhadap kecepatan yang menyinggung lingkaran ini disebut percepatan sentripetal. Percepatan sentripetal arahnya selalu menuju pusat lingkaran. Jika Anda masih ingat hubungan antara kecepatan linear dan kecepatan sudut, persamaan kecepatan sentripetal dapat ditulis dalam bentuk lain, yaitu

as = ω2r                 (1-10)

Contoh Soal 6 :

Sebuah bola yang memiliki jari-jari 2 cm berputar dalam bidang lingkaran horizontal. Satu kali putaran dapat ditempuh bola selama 2 s. Tentukanlah percepatan sentripetalnya.

Kunci Jawaban :

Diketahui: r = 2 cm = 0,02 m, dan T = 2 s.

v = 2πr / T = 2π (0,02 m) / 2 s = = 0,0628 m/s

as = v2 / r = (0,0628 m/s)2 / 0,02 m

a= 0,917 m/s2

Jadi, percepatan sentripetal yang dialami bola adalah 0,197 m/s2.

C. Gerak Melingkar Beraturan

Pada bab sebelumnya, yakni bab gerak dalam satu dimensi atau disebut juga sebagai gerak lurus, terdapat gerak lurus beraturan (GLB) dan gerak lurus berubah beraturan (GLBB) begitu pula dalam gerak melingkar terdapat gerak melingkar beraturan (GMB) dan gerak melingkar berubah beraturan (GMBB). Pada bab ini hanya dibahas gerak melingkar beraturan (GMB), sedangkan gerak melingkar berubah beraturan akan Anda pelajari di Kelas XI.

Gerak melingkar beraturan (GMB) dapat dianalogikan seperti gerak lurus beraturan (GLB) di mana kecepatan ω sudut sama dengan kecepatan sesaat.

ω = perpindahan sudut / selang waktu

ω = Δq / Δt


dengan : Δq = Δx / Δr

Jadi, 

Oleh karena t0 = 0 maka

ωt = θ − θ0                (1-11)

dan ω = konstan.

Contoh Soal 7 :

Sebuah partikel bergerak melingkar beraturan dengan posisi sudut awal 5 rad. Jika partikel bergerak dengan kecepatan sudut 10 rad/s, tentukanlah posisi sudut akhir pada saat t = 5 s.

Kunci Jawaban :

Diketahui: 

θ0  = 5 rad,
ω = 10 rad/s, dan
t = 5 s.

θ =  θ0 + ωt

θ = 5 rad + 10 rad/s × 5 s

θ = 55 rad

Jadi, posisi sudut akhir partikel adalah 55 rad.

Jelajah Fisika :

Helikopter

Helikopter memiliki mesin yang membuat bilahnya berputar beraturan. Begitu bilah berputar beraturan, mesin mendorong udara ke bawah sehingga membuat helikopter terangkat ke atas. Dengan memiringkan bilahnya, pilot dapat membuat helikopter lepas landas, melayang, atau mendarat. Untuk bergerak maju, bilah harus dimiringkan sehingga bilah mendorong sebagian udara ke belakang sekaligus ke bawah. Biasanya, helikopter memiliki rotor kecil di ekornya. Rotor ini dipakai untuk menghentikan pesawat berputar beraturan ke arah yang berlawanan dari rotor utama. (Sumber: Oxford Ensiklopedi Pelajar, 1995)

Rangkuman :

1. Sebuah benda dapat dikatakan bergerak melingkar jika lintasan yang dilewatinya berbentuk lingkaran.

2. Kecepatan yang diberikan kepada benda ketika bergerak melingkar, dalam arah tangensial, disebut kecepatan linear.

3. Kecepatan anguler adalah perubahan sudut (Δθ) dalam selang waktu (Δt) tertentu.

4. Hubungan antara kecepatan linear dan kecepatan anguler dapat dituliskan sebagai berikut.

v=ωr

5. Percepatan sentripetal adalah percepatan yang arahnya selalu menuju pusat lingkaran.

6. Gerak melingkar beraturan (GMB) terjadi jika kecepatan anguler benda bernilai tetap (konstan). Persamaan terdapat dalam GMB adalah :

ω = konstan
θ =  θ0 + ωt

Anda sekarang sudah mengetahui Gerak Melingkar BeraturanKecepatan LinearKecepatan Anguler, dan Percepatan Sentripetal. Terima kasih anda sudah berkunjung ke Perpustakaan Cyber.

Referensi :

Saripudin, A., D. Rustiawan K., dan A. Suganda. 2009. Praktis Belajar Fisika 1 : untuk Kelas 10 Sekolah Menengah Atas / Madrasah Aliyah Program Ilmu Pengetahuan Alam. Pusat Perbukuan Departemen Nasional, Departemen Pendidikan Nasional, Jakarta. 194 hlm.

Tidak ada komentar:

Posting Komentar

Label